Turunan Fungsi Trigonometri

Rumus dasar turunan fungsi trigonometri adalah turunan fungsi sinus dan kosinus, yang diperoleh dari konsep limit, yakni sebagai berikut:

Jika y = sin x maka y’ = cos x

Jika y = cos x maka y’ = –sin x

Dari rumus dasar tersebut, diturunkanlah rumus pengembangan, yakni turunan fungsi tangens, cotangens, secan dan cosecan. Proses pengembangan rumus tersebut adalah

Jika y = tan x maka y’ = sec2x

Jika y = cot x maka y’ = – cosec2x

Jika y = sec x maka y’ = sec x . tan x

Jika y = cosec x maka y’ = – cosec x . tan x

Selanjutnya, terdapat rumus pengembangan turunan fungsi trigonometri dengan aturan rantai, yakni sebagai berikut :
Misalkan u(x) adalah fungsi yang terdefinisi pada x bilangan real dan f(u) = sin u, maka untuk y = f [u(x)] diperoleh y’ = f ‘ [u(x)]. u’(x)
y’ = (cos u)(u’)
y’ = u’.cos u
Sehingga dengan cara yang sama dapat disimpulkan bahwa jika u adalah fungsi yang terdefinisi pada bilangan real, maka diperoleh:

Untuk y = sin u maka y’ = u’.cos u

Untuk y = cos u maka y’ = –u’.sin u

Untuk y = tan u maka y’ = u’. sec2u

Untuk y = cot u maka y’ = u'. cosec2u

Untuk y = sec u maka y’ = u’. sec u . tan u

Untuk y = csc u maka y’ = –u’. cosec u . tan u

Untuk lebih jelasnya ikutilah contoh soal berikut ini:

01. Tentukanlah turunan pertama dari setiap fungsi berikut ini :
(a) f(x) = cos (3x – 4)
(b) f(x) = 3.tan (x2 – 4)
(c) f(x) = cot (2x + 5) – 5.sec(x2 – 4)
(d) f(x) = 4x2 – sec(2x2 + 3x)
Jawab

(a) f(x) = cos (3x – 4)
Maka
f ’(x) = (3)(–sin(3x – 4))
f ’(x) = –3.sin(3x – 4)

(b) f(x) = 3.tan (x2 – 4)
Maka
f ’(x) = (2x)(3)sec2 (x2 – 4)
f ’(x) = 2x sec2 (x2 – 4)

(c) f(x) = cot (2x + 5) – 5 . sec(x2 – 4)
Maka
f ’(x) = (2)(5)(2 . sec2x) – (2x)(5.sec(x2 – 4).tan(x2 – 4))
f ’(x) = 20 . sec2x – 10x.sec(x2 – 4).tan(x2 – 4)

(d) f(x) = 4x2 – sec(2x2 + 3x)
Maka f ’(x) = 8x – ((4x + 3) sec(x2 + 3x).tan(2x2 + 3x))

02. Tentukanlah turunan pertama dari setiap fungsi berikut ini:




03. Tentukanlah turunan pertama dari setiap fungsi berikut ini:

jawab


04. Tentukanlah nilai setiap turunan berikut ini untuk x bilangan real yang diberikan:

jawab



Komentar

Postingan populer dari blog ini

FARADILLA HAFIZHAH JUARA FAVORIT TINGKAT NASIONAL CABANG LOMBA MICROTEACHING PADA AJANG WALISONGO SCIENCE COMPETITION 2021

17 MAHASISWA JURUSAN TADRIS MATEMATIKA MENGIKUTI WISUDA EMAS IAIN BATUSANGKAR KE-50

Contoh Soal Latihan SIfat-Sifat Fungsi