Pertidaksamaan Nilai Mutlak

Nilai mutlak suatu bilangan real x merupakan jarak antara bilangan itu dengan nol pada garis bilangan. Dan dilambangkan dengan │x│. Secara formal nilai mutlak didefinisikan:

Contoh : │–3│ = 3 , │5│ = 5 , │4 – 6│ = │4 – 6│
Sifat-sifat pertidaksamaan nilai mutlak pada interval terbuka:
Sifat-sifat diatas berlaku pula untuk interval tertutup.

Untuk pemahaman lebih lanjut, ikutilah contoh soal beriku ini:

01. Tentukanlah interval penyelesaian pertidaksamaan berikut ini :
(a) │x – 6│ ≤ 9
(b) │x + 2│ > 4
Jawab
(a) │x – 6│ ≤ 9
      –9 ≤ x – 6 ≤ 9
      –9 + 6 ≤ x – 6 + 6 ≤ 9 + 6
      –3 ≤ x ≤ 15
(b) │x + 2│ > 4
      x + 2 < –4 atau x + 2 > 4
      x < –4 – 2 atau x > 4 – 2
      x < –6 atau x > 2

02. Tentukanlah interval penyelesaian pertidaksamaan berikut ini :
(a) │2x + 1│ ≥ │x – 2│
(b) │x + 2│ > 2│x – 1│
Jawab
(a) │2x + 1│ ≥ │x – 2│
     (2x + 1)2 ≥ (x – 2)2
     4x2 + 4x + 1 ≥ x2 – 4x + 4
     3x2 + 8x – 3 ≥ 0
     (3x – 1)(x + 3) ≥ 0
     x1 = 1/3 dan x2 = –3
     Jadi x ≤ –3 atau x ≥ 1/3

(b) │x + 2│ > 2│x – 1│
      (x + 2)2 > 4(x – 1)2
      x2 + 4x + 4 > 4(x2 – 2x + 1)
      x2 + 4x + 4 > 4x2 – 8x + 4
      3x2 – 12x < 0
      3x(x – 4) < 0
      x1 = 0 dan x2 = 4
     Jadi 0 < x < 4

03. Tentukanlah interval penyelesaian pertidaksamaan berikut ini :
(a) │x2 + 2x – 9│ ≤ 6
(b) │x2 – 3x – 14│ ≥ 4
Jawab

05. Tentukanlah interval penyelesaian pertidaksamaan │2x + 5│ < x + 4
jawab


Komentar

Postingan populer dari blog ini

FARADILLA HAFIZHAH JUARA FAVORIT TINGKAT NASIONAL CABANG LOMBA MICROTEACHING PADA AJANG WALISONGO SCIENCE COMPETITION 2021

17 MAHASISWA JURUSAN TADRIS MATEMATIKA MENGIKUTI WISUDA EMAS IAIN BATUSANGKAR KE-50

Contoh Soal Latihan SIfat-Sifat Fungsi