Parabola

Parabola adalah tempat kedudukan titik-titik yang jaraknya terhadap titik tertentu dan garis tertentu selalu sama. (karena e = 1)
Titik tersebut dinamakan fokus (F), dan garis tersebut dinamakan direktrik (d).
Terdapat dua macam bentuk parabola, yakni
1. Parabola horizontal
2. Parabola vertikal.

Secara lebih rinci, akan dijelaskan menjadi 4 bagian sebagai berikut. (Rangkuman rumus ada dipaling bawah)

1. Parabola Horizontal dengan Puncak O(0, 0)

Parabola ini mempunyai bentuk Umum:
y2 = 4px,

dimana Koordinat titik fokusnya di F(p, 0)
persamaan direktrisnya x = –p
Sumbu simetrisya adalah sumbu-x
Panjang latus rectum LR = 4p
Dengan catatan:
Jika p > 0 maka kurva membuka ke kanan
Jika p < 0 kurva membuka ke kiri

2. Parabola Vertikal dengan Puncak O(0, 0)

Parabola ini mempunyai bentuk Umum:
x2 = 4py

dimana Koordinat titik fokusnya di F(0, p)
Persamaan direktrisnya y = –p
Sumbu simetrisya adalah sumbu-y
Panjang latus rectum LR = 4p
Catatan :
Jika p > 0 maka kurva membuka ke atas
Jika p < 0 kurva membuka ke bawah

Untuk lebih jelasnya, ikutilah contoh soal berikut ini:

01. Tentukan titik fokus, garis direktis, dan latus rectum dari parabola 3y2-24x=0
Jawab:
Parabola Horizontal dengan Puncak O(0, 0)
3y- 24x=0
3y= 24x
y= 8x
y= 4px
4p = 8
p = 2
Titik focus adalah (p,0), sehingga titik fokusnya (2,0).
Garis direktris adalah garis x = -p, sehingga persamaan garis direktrisnya x = -2
Panjang Latus rectum adalah 4p, sehingga Panjang latus rectumnya adalah 8

02. Tentukan titik fokus, garis direktis, dan latus rectum dari parabola 2x2+32y=0
Jawab:
Parabola Vertikal dengan Puncak O(0, 0)
2x+ 32y = 0
2x= -32y
x= -16y
x= 4py
4p = -16
p = -4
Titik focus adalah (0,p), sehingga titik fokusnya (0,-4).
Garis direktris adalah garis y = -p, sehingga persamaan garis direktrisnya y=4
Panjang Latus rectum adalah |4p|, sehingga Panjang latus rectumnya adalah 16

03. Sebuah parabola dengan puncak di O(0,0) dan fokus pada sumbu-X serta melalui titik (2,8). Tentukanlah persamaan parabola tersebut.
Jawab:
Parabola Horizontal dengan Puncak O(0, 0)
Sehingga, bentuk umum persamaannya y= 4px
y2 = 4px
8= 4p (2)
64 = 8p
p = 8
Jadi persamaan parabola y2 = 4px, sehingga persamaan parabola y= 32x

04. Sebuah parabola dengan puncak di O(0,0) dan titik fokusnya di F(0,5). Tentukanlah persamaan parabola tersebut
Jawab:
Karena F(0,p) maka bentuk Parabola Vertikal dengan Puncak O(0, 0)
Sehingga, bentuk umum persamaannya x2 = 4py
Karena titik fokusnya di F(0,5), maka p=5
Jadi persamaan parabola x2 = 4py, sehingga persamaan parabola x= 20y

3. Parabola Horizontal dengan Puncak M(a, b)

Bentuk Umum : (y – b)2 = 4p(x – a),
dimana Koordinat fokusnya di F(p+ a, b)
Persamaan direktrisnya x = –p + a
Persamaan sumbu simetrisya y = b
Panjang latus rectum LR = 4p
Dengan catatan :
Jika p > 0 maka kurva membuka ke kanan
Jika p < 0 kurva membuka ke kiri

4. Parabola Vertikal dengan Puncak M(a, b)

Parabola ini mempunyai bentuk Umum : (x – a)2 = 4p(y – b),
dimana Koordinat fokusnya di F(a, p + b)
Persamaan direktrisnya y = –p + b
Persamaan sumbu simetrisya x = a
Panjang latus rectum AB = 4p
Dengan cataran
Jika p > 0 maka kurva membuka ke atas
Jika p < 0 kurva membuka ke bawah

Untuk lebih jelasnya, ikutilah contoh soal berikut ini:

05. Tentukan titik puncak dari parabola y2 + 2x – 6y + 11 = 0
Jawab
y2 + 2x – 6y + 11 = 0
y2 – 6y = –2x – 11
y2 – 6y + 9 = –2x – 11 + 9
(y – 3)2 = –2x – 2
(y – 3)2 = –2(x + 1)
Berdasarkan persamaan, bentuk parabola Horizontal
Jadi titik pusatnya adalah (–1, 3)

06. Tentukan titik fokus dari parabola x2 + 10x – 8y + 41 = 0
Jawab
x2 + 10x – 8y + 41 = 0
x2 + 10x = 8x – 41
x2 + 10x + 25 = 8x – 41 + 25
(x + 5)2 = 8x + 16
(x + 5)2 = 8(x + 4)
Berdasarkan persamaan, bentuk parabola Vertikal
Sehingga a = –5 , b = –4 dan p = 2
Jadi titik fokusnya adalah F(a, p + b) = F(–5, –4 + 2) = F(–5, –2)

07. Diketahui parabola x2 – 6x – 12y – 15 = 0. Persamaan sumbu simetrinya adalah …
Jawab
x2 – 6x – 12y – 15 = 0
x2 – 6x = 12y + 15
x2 – 6x + 9 = 12y + 15 + 9
(x – 3)2 = 12y + 24
(x – 3)2 = 12(y + 2) , 
Berdasarkan persamaan, bentuk parabola Vertikal
sehingga a = 3 , b = –2 dan p = 3
Jadi Persamaan sumbu simetrinya adalah x = 3

08. Diketahui parabola (y – 4)2 = 2(x – 3). Persamaan garis direktrisnya adalah …
Jawab
(y – 4)2 = 2(x – 3)
Berdasarkan persamaan, bentuk parabola Horizontal
Maka a = 3 , b = 4 dan p = 1/2
Jadi Persamaan direktrisnya adalah x = –p + a
y = –1/2 + 3
y = 5/2

09. Sebuah parabola dengan puncak di (3, –2) dan fokus di (4, –2). Tentukanlah persamaan parabola tersebut
Jawab
Berdasarkan puncak dan fokusnya, bentuk parabola Horizontal
Bentuk Umum : (y – b)2 = 4p(x – a)
Puncak di (3, –2), maka a = 3 dan b = –2
Fokus F(p + a, b) = F(p + 3, –2) = F(4, –2) 
maka 
p + 3 = 4
p = 1
Jadi persamaan parabola : 
(y + 2)2 = 4(1)(x – 3)
y2 + 4y + 4 = 4x – 12
y2 – 4x + 4y + 4 + 12 = 0
y2 – 4x + 4y + 16 = 0

10. Tentukanlah Persamaan parabola yang berpuncak di (4, 3), mempunyai sumbu simetri x = 4 dan panjang latus rectum 8
Jawab
Berdasarkan puncak dan sumbu simetri, bentuk parabola Vertikal
Bentuk Umum : (x – a)2 = 4p(y – b)
Puncak di (4, 3), maka a = 4 dan b = 3
Panjang latus rectum = 8 = 4p maka p = 2
Jadi persamaan parabola : 
(x – 4)2 = 4(2)(y – 3)
x2 – 8x + 16 = 8y – 24
x2 – 8x – 8y + 16 + 24 = 0
x2 – 8x – 8y + 40 = 0


RANGKUMAN



Komentar

Postingan populer dari blog ini

FARADILLA HAFIZHAH JUARA FAVORIT TINGKAT NASIONAL CABANG LOMBA MICROTEACHING PADA AJANG WALISONGO SCIENCE COMPETITION 2021

17 MAHASISWA JURUSAN TADRIS MATEMATIKA MENGIKUTI WISUDA EMAS IAIN BATUSANGKAR KE-50

Contoh Soal Latihan SIfat-Sifat Fungsi