Melukis Grafik Fungsi Polinom

Langkah- Langkah melukis Grafik Fungsi polinom
1. Menentukan titik potong dengan sumbu X dan sumbu Y (jika mudah ditentukan)
2. Menentukan interval fungsi naik dan fungsi turun serta titik-titik stasionernya
3. Menentukan Interval cekung atas dan cekung bawah fungsi serta titik beloknya
4. Melukis sketsa grafik

Untuk lebih jelasnya, ikutilah contoh soal berikut ini :
01. Lukislah grafik fungsi polinom f(x) = x3 – 9x2 + 24x – 10
Jawab
Langkah 1 : Menentukan titik potong dengan sumbu-sumbu koordinat.
Titik potong dengan sumbu-x sulit ditentukan
Titik potong dengan sumbu-y
Syarat : x = 0
Maka :
y = (0)3 – 9(0)2 + 24(0) – 10
y = –10
Titiknya (0, –10)
Langkah 2 : Interval fungsi naik dan turun
f(x) = x3 – 9x2 + 24x – 10
f’(x) = 3x2 – 18x + 24
maka:
f’(x) = 0
3x2 – 18x + 24 = 0
x2 – 16x + 8 = 0
(x – 4)(x – 2) = 0
x1 = 2 dan x2 = 4

Uji : x = 0 maka f’(0) = 3(0)2 – 18(0) + 24 = 24 > 0 (fungsi naik)
Uji : x = 3 maka f’(3) = 3(3)2 – 18(3) + 24 = –3 < 0 (fungsi turun)
Uji : x = 5 maka f’(4) = 3(5)2 – 18(5) + 24 = 9 > 0 (fungsi naik)

Sehingga interval fungsi naik pada x < 2 atau x > 4
interval fungsi turun pada 2 < x < 4
Titik stasionernya :
x = 2 maka f(2) = (2)3 – 9(2)2 + 24(2) – 10 = 10 , Titik maksimum di (2, 10)
x = 4 maka f(4) = (4)3 – 9(4)2 + 24(4) – 10 = –5 , Titik minimum di (4, –42)
Langkah 3 : Menentukan interval cekung atas dan cekung bawah
f(x) = x3 – 9x2 + 24x – 10
f’(x) = 3x2 – 18x + 24
f’’(x) = 6x – 18
maka f’’(x) = 0
6x – 18 = 0
6x = 18 maka x = 3

Uji : x = 0 maka f’’(0) = 6(0) – 18 = –18 < 0 (cekung bawah)
Uji : x = 4 maka f’’(4) = 6(4) – 18 = 6 > 0 (cekung atas)
Koordinat titik beloknya :
x = 3 maka f(3) = (3)3 – 9(3)2 + 24(3) – 10 = 29 Jadi titiknya (3, 8)
Gambar grafiknya:


02. Lukislah grafik fungsi polinom f(x) = x3 + 3x2 – 9x – 20
Jawab
Langkah 1 : Menentukan titik potong dengan sumbu-sumbu koordinat.
Titik potong dengan sumbu-x sulit ditentukan
Titik potong dengan sumbu-y
Syarat : x = 0
Maka :
y = (0)3 + 3(0)2 – 9(0) – 20
y = –20
Titiknya (0, –20)
Langkah 2 : Interval fungsi naik dan turun
f(x) = x2 + 3x2 – 9x – 20
f’(x) = 3x2 + 6x – 9
maka:
f’(x) = 0
3x2 + 6x – 9 = 0
x2 + 2x – 3 = 0
(x + 3)(x – 1) = 0
x1 = –3 dan x2 = 1

Uji : x = –4 maka f’(–4) = 3(–4)2 + 6(–4) – 9 = 15 > 0 (fungsi naik)
Uji : x = 0 maka f’(3) = 3(0)2 + 6(0) – 9 = –9 < 0 (fungsi turun)
Uji : x = 2 maka f’(2) = 3(2)2 + 6(2) – 9 = 15 > 0 (fungsi naik)
Sehingga interval fungsi naik pada x < –3 atau x > 1
interval fungsi turun pada –3 < x < 1
Titik stasionernya :
x = –3 maka f(–3) = (–3)3 + 3(–3)2 – 9(–3) – 20 = 7 , Titik maksimum di (–3, 7)
x = 1 maka f(1) = (1)3 + 3(1)2 – 9(1) – 20 = –25 , Titik minimum di (1, –25)
Langkah 3 : Menentukan interval cekung atas dan cekung bawah
f(x) = x3 + 3x2 – 9x – 20
f’(x) = f’(x) = 3x2 + 6x – 9
f’’(x) = 6x + 6
maka
f’’(x) = 0
6x + 6 = 0
6x = –6
x = –1

Uji : x = –2 maka f’’(–2) = 6(–2) + 6 = –6 < 0 (cekung bawah)
Uji : x = 0 maka f’’(0) = 6(0) + 6 = 6 > 0 (cekung atas)
Koordinat titik beloknya :
x = –1 maka f(–1) = (–1)3 + 3(–1)2 – 9(–1) – 20 = –9 Jadi titiknya (–1, –9)
Gambar grafiknya :

Komentar

Postingan populer dari blog ini

FARADILLA HAFIZHAH JUARA FAVORIT TINGKAT NASIONAL CABANG LOMBA MICROTEACHING PADA AJANG WALISONGO SCIENCE COMPETITION 2021

17 MAHASISWA JURUSAN TADRIS MATEMATIKA MENGIKUTI WISUDA EMAS IAIN BATUSANGKAR KE-50

Contoh Soal Latihan SIfat-Sifat Fungsi