Integral Tak Tentu dari Fungsi Trigonometri

Pada materi “Turunan Fungsi” telah diuraikan tentang rumus-rumus dasar turunan fungsi trigonometri, yakni turunan fungsi sinus, cosinus, tangen, cotangen, secan dan cosecant. Mengingat integral merupakan proses balikan dari turunan, maka rumus-rumus dasar integral trigonometri didapat dari rumus dasar turunan fungsi trigonometri, yakni sebagai berikut:

1. Jika f(x) = cos x maka f’(x) = –sin x. artinya ∫sin x dx = –cos x + C
2. Jika f(x) = sin x maka f’(x) = cos x. artinya ∫cos x dx = sin x + C
3. Jika f(x) = tan x maka f’(x) = sec2x artinya ∫sec2x  dx = tan x + C
4. Jika f(x) = cot x maka f’(x) =csc2x artinya ∫csc2x dx = –cot x + C
5. Jika f(x) = sec x maka f’(x) = sec x. tan x artinya ∫tan x . sec x dx = sec x + C
6. Jika f(x) = csc x maka f’(x) = –csc x. cot x artinya ∫cot x . csc x dx = –csc x + C

Dari rumus-rumus dasar tersebut diperoleh rumus-rumus pengembangan, yaitu :
Jika y = sin (ax + b) maka y’ = a.cos (ax + b), sehingga

Dengan cara yang sama diperoleh rumus-rumus pengembangan integral trigonometri yang lainnya, yakni sebagai berikut:

 

Untuk pemahaman selengkapnya akan diuraikan dalam contoh-contoh soal berikut ini :
01. Selesaikanlah integral berikut ini:


02. Selesaikanlah integral berikut ini:

jawab



03. Selesaikanlah integral berikut ini :
a. ∫sin4x . cos2x dx
b. ∫(sin x + cos x)2 dx
jawab


 


Komentar

Postingan populer dari blog ini

FARADILLA HAFIZHAH JUARA FAVORIT TINGKAT NASIONAL CABANG LOMBA MICROTEACHING PADA AJANG WALISONGO SCIENCE COMPETITION 2021

17 MAHASISWA JURUSAN TADRIS MATEMATIKA MENGIKUTI WISUDA EMAS IAIN BATUSANGKAR KE-50

Contoh Soal Latihan SIfat-Sifat Fungsi