Aturan Dasar Turunan Fungsi Aljabar

Turunan dari fungsi kontinu y = f(x) merupakan laju perubahan nilai y terhadap nilai x.
Jika perubahan nilai x tersebut sebesar h, maka kita dapat menuliskan :
sebagai hasil dari perubahan tersebut (seperti gambar dibawah ini).
Jika nilai h diambil kecil mendekati nol (limit h mendekati nol), maka perubahan tersebut akan menjadi laju perubahan. Inilah yang menjadi dasar dari konsep turunan.
Sehingga turunan dari fungsi f(x) dilambangkan dengan f ‘(x) didefinisikan sebaagai
Jadi notasi turunan dari fungsi y = f(x) dapat ditulis sebagai

Untuk lebih jelasnya ikutilah contoh soal berikut ini:

01. Dengan menggunakan definisi turunan, tentukanlah turunan dari setiap fungsi berikut ini :
(a) f(x) = 3x – 5
(b) f(x) = 4x2 + 3x
(c) f(x) = x3 – 2x
Jawab
(a) f(x) = 3x – 5

(b) f(x) = 4x2 + 3x

(c) f(x) = x3 – 2x

Berdasarkan definisi turunan di atas, kita dapat memperoleh aturan tersendiri untuk mendapatkan rumus dasar turunan fungsi aljabar, yakni:
Jika f(x) = axn maka f ’(x) = n.axn-1

Pengembangan dari rumus tersebut adalah turunan bentuk f(x) = ax dan bentuk f(x) = c (dimana c suatu konstanta), yakni sebagai berikut :
Jika f(x) = ax maka f ’(x) = a
Jika f(x) = a maka f ’(x) = 0

Untuk lebih jelasnya ikutilah contoh soal berikut ini:

02. Dengan menggunakan rumus dasar turunan, tentukanlah turunan pertama dari setiap fungsi berikut ini :
 

03. Dengan menggunakan rumus dasar turunan, tentukanlah turunan pertama dari setiap fungsi berikut ini:
 
 
 

Komentar

Postingan populer dari blog ini

FARADILLA HAFIZHAH JUARA FAVORIT TINGKAT NASIONAL CABANG LOMBA MICROTEACHING PADA AJANG WALISONGO SCIENCE COMPETITION 2021

17 MAHASISWA JURUSAN TADRIS MATEMATIKA MENGIKUTI WISUDA EMAS IAIN BATUSANGKAR KE-50

Contoh Soal Latihan SIfat-Sifat Fungsi